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Abstract. The rates of inclusive photo- and electroproduction of the ηc meson: γ(∗) + p → ηc + X are
calculated in the triple Regge region, integrated over the diffractive mass X. For the Regge exchanges we
use the hard pomeron and odderon, both being calculated in the framework of perturbative QCD. The
integrated cross section depends upon the coupling of the BFKL pomeron to two C = −1 odderons, and
it is found to be of the order of 60 pb for photoproduction and 1.5 pb at Q2 = 25 GeV2.

1 Introduction

The existence of the odderon [1], the partner of the pomeron
which is odd under charge conjugation C, is an important
prediction of perturbative QCD. It is a direct consequence
of the number of colors Nc being greater than two. In the
leading order, the odderon appears as a bound state of three
reggeized gluons. Its experimental observation is a strong
challenge for the experimentalists. A particular promis-
ing scattering process where the exchange of the odderon
may be seen is the diffractive production of particles with
a C-odd exchange, such as photo- and electroproduction
of pseudoscalar mesons (PS), provided a large momentum
scale is involved,whichgives a justification for theuse of per-
turbative QCD. This includes, in particular, the diffractive
production of charmed pseudoscalar mesons, for example
the process γ+p → ηc+p. Correspondingly, a large amount
of literature has been devoted to this class of diffractive pro-
cesses. For large photon virtualities Q2, for heavy mass PS
mesons (such as ηc), and for large momentum transfers
the relevant impact factors for the transition γ(γ∗) → PS
have been calculated perturbatively [2]. As for the odderon
structure, different models have been used: the exchange
of three non-interacting gluons in a C = −1 state [2], and,
more recently, the perturbative QCD odderon with inter-
cept exactly unity [3, 4], used to calculate the production
rates of the ηc in [5]1. In both models, there is some un-
certainty coming from the coupling of the odderon to the
proton. Numerical estimates for the cross sections turn out
to be somewhat different in these approaches. However, in

1 A different approach, a non-perturbative odderon based
upon the idea of a “stochastic QCD vacuum” has been used
in [6].

all cases they are very small and, most unfortunately, do not
grow with energy (in the case of the perturbative QCD odd-
eron, they even slowly decrease with energy). This leaves
little hope to see the odderon by increasing the energy of
the reaction.

However, the situation may become different if, instead
of the quasielastic process γ+p → ηc +p, one considers the
inclusive cross section γ + p → ηc +X in the triple Regge
region. In this case the odderon does not couple directly to
the quarks of the target proton but rather to the diffractive
system “X” which, for high masses, can be modelled by
a cut gluon ladder, the gluon density inside the proton.
The proton is therefore coupled to the cut gluon ladder,
i.e. the pomeron, and this coupling is known through the
gluon density. This fact permits one to avoid the previously
mentioned uncertainties in the odderon–proton coupling.
Together with this process also the low mass diffractive
state (the proton) with the meaning of a double odderon
exchange is usually considered.

In the Regge language this new situation basically in-
volves the coupling of two odderons to a cut pomeron, the
POO vertex. Since we are using perturbative QCD both
for the odderon and for the cut pomeron, also this vertex
has to be calculated in perturbative QCD. This has been
done in [8]: the vertex has been obtained in an analysis of
a six-gluon amplitude D6. In our application of this vertex
we shall restrict ourselves to the leading large-Nc limit,
which leads to a relatively simple form of D6. In [8] it was
also shown that the full amplitude D6 can be decomposed
into the sum of two contributions, where the first one re-
sults from the reggeization of the gluon, and the second
one contains the POO vertex. Correspondingly, also our
cross section comes as the sum of two pieces (denoted by
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P and POO, respectively). The second one corresponds
to the normal “triple Regge picture” where the pomeron
splits into two odderons, whereas the first one is related to
reggeization of the gluon and leads the exchange of three
non-interaction gluons in the odderon channel. We will cal-
culate both. For the odderon states we will use the solution
found in [3], which has a maximal intercept (unity) and a
very simple analytical form. This solution has already been
used by us to calculate the odderon exchange in the process
γ + p → ηc + p [5].

The use of these elements allows one to compute the
diffractive cross section d2σ

dtdM2 for the process γ + p →
ηc +X. Our perturbative QCD analysis only depends upon
one free parameter, the coupling of the gluon ladder to the
proton: this coupling will be fixed by fitting the model to the
gluon density of the proton. To simplify the calculations we
restrict ourselves to the integrated (overM2) cross section:
the calculation of the differential (in M2) cross section
requires a slightly different treatment of the D6 amplitude
which will not be pursued in the present work. Nevertheless
the most inportant and basic information is given by the
integrated cross section.

As we have indicated before, we expect that the cross
section for the inclusive process γ + p → ηc +X is larger
than that for the quasielastic process γ + p → ηc + p. We
know that the cut gluon ladder grows as exp∆y, where y is
the rapidity gap between the proton and the POO vertex,
and ∆ is the value of the pomeron intercept minus unity.
From this it follows that the bulk of the inclusive cross
section will come from the region where y is as large as
possible. i.e. close to the total rapidity of the process (note
however, that, in order to see the exchange of an odderon,
one needs also a large rapidity gap between the outgoing
ηc and the diffractive system). In other words, the mass
of the diffractive system “X” wants to become as large as
possible. Because of this growth (with energy) of the cut
gluon ladder we expect to see a strong enhancement of the
inclusive cross section at high energies, compared to the
quasielastic process γ+p → ηc+pwhere the gluon ladder is
absent. The comparison of our results with the quasielastic
cross section is made difficult by the intrinsic uncertainty of
the odderon–proton coupling: a recent analysis shows that
the estimate obtained in [2] and also adopted in [5]may have
used a too large value of this coupling and has to be reduced:
if this is the case, the cross section obtained in the present
paper is, in fact, much larger that the quasielastic one.

Our paper is organized as follows. In the next section we
shall briefly recall some results which constitute our start-
ing point to attack the problem, the cross section formula.
In Sect. 3 the first contribution (P ) is considered, and the
corresponding integrated (in M2) cross section is written
in terms of a multidimensional integral which, later on, will
be computed numerically. In Sects. 4 and 5 the structure of
the second contribution (POO) is considered. Both contri-
butions are calculated in the large Nc limit, which leads to
considerable simplifications and shows a symmetry shared
by the leading odderon states [3]. Finally, the numerical
analysis is presented and discussed in Sect. 6, followed by
the conclusions in Sect. 7.

2 The cross section formula
in perturbative QCD

We start from the analysis [8] of QCD Feynman diagrams
in the leading log s approximation, and we recapitulate the
main results.Theapproach taken from [8] is a generalization
of a previous analysis [9] of the four-gluon system (related
to the triple pomeron vertex): it extends this analysis up to
six gluons in the t-channel, and so it encounters, for the first
time, the two-odderon state.Asdescribed in [8], the analysis
of Feynman diagrams in the high energy limit leads to a
tower of gluon amplitudes,D2, D3, D4, D5, and D6, which
satisfy a set of coupled integral equations. These functions
are non-amputated, i.e. they contain reggeon denominators
for the outgoing (reggeized) gluon states [9]. The latter are
more convenient degrees of freedom than the elementary
gluons in this kinematics. In the present context we are
interested in the D6 amplitude which can be used to build
the cross section, integrated in the diffractive mass.

In the analysis in [8,9], all functions D2, . . . start from
the impact factor of a virtual photon which splits into a
quark–antiquark pair. In the present case, the external par-
ticle is the proton: assuming that, to a good approximation,
the proton can be viewed as a quark–diquark system, the
coupling of the gluons to the proton should have the same
structure as in the photon case; only the overall normal-
ization of this coupling has to be treated as a phenomeno-
logical parameter.

The diagrammatic structure of the differential cross
section d2σ

dtdM2 for the process γ+ p → ηc +X is illustrated

in Fig. 1a. In the two exchange channels one recognizes the
two-odderon states, consisting of three gluons with pairwise
interactions. The structure of the blob (related to D6) will
be discussed in a future paper. When the integration over
the squared missing mass M2 is performed, the expres-
sion for the cross section dσ

dt =
∫

dM2 d2σ
dtdM2 simplifies. The

result is illustrated in Fig. 1b: the blob now stands for D6
which can directly be taken from [8]. It depends upon the
angular momentum variable ω which is conjugate to the
total rapidity Y .

The cross section can be written as

dσ
dt

= ξ
∑

i=1,2

∫
dω
2πi

eY ω

∫
dµ1dµ2∏6

i=1 k
2
i

× Φi(1, 2, 3)[Φi(4, 5, 6)]∗D6(1, 2, 3, 4, 5, 6;ω) . (1)

Here Φi denotes the impact factor for the transitions γ∗ →
ηc with the photon polarizations i = 1, 2 and the color
structure dabc. Y is the overall rapidity; t = −q2 is the
invariant associated to the momentum transfer across the
impact factor, and the arguments 1, 2, 3 and 4, 5, 6 refer to
both the color indices ai and transverse momenta, ki, of
the gluons exchanged in the initial amplitude i = 1, 2, 3
and final (conjugated) amplitude i = 4, 5, 6. Finally, dµ1 is
the integration measure for the three t-channel gluons on
the LHS:

dµ1 = d2k1d2k2d2k3δ
2(k1 + k2 + k3 − q) (2)
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Fig. 1. Illustration of the process γ∗ + p → ηc + X. Diffractive cross section differential a and integrated b in the diffractive
mass

anddµ2 is the analogous integrationmeasure for the three t-
channel gluons 4, 5, 6 on the RHS. The normalization factor
ξ will be discussed in the next section.

From the analysis [8] of the coupled integral equations
it follows that D6 can be presented as a sum of different
terms. One term (denoted by DR

6 ) is obtained by collect-
ing the reggeizing pieces: the outgoing six-gluon state may
contain configurations where a pair of two gluons is in
an antisymmetric color octet configuration, which satis-
fies the BFKL bootstrap condition and collapses into a
single gluon. As a result, one obtains contributions with
a smaller number of reggeized gluons. It is convenient to
separate these configurations from the rest, i.e. to define
the sub-amplitude DI

6 which is “irreducible” with respect
to this reduction procedure. This reduction leads to the
decomposition D6 = DR

6 + DI
6, separating the reggeizing

(R) and irreducible (I) parts. The DI
6 term ((6.3) of [8]) is

rather lengthy; however, for an odderon in the (123) and
(456) channels, we will need, in the large-Nc limit, only one
term, denoted by W , which describes the transition of two
reggeized gluons into six reggeized gluons: all other terms
will be shown (see Sect. 4) to be suppressed by a factor of
1/N2

c (or even higher powers of this). It is this piece of DI
6

which yields the POO vertex.
Diagrammatically, the piece of DI

6 which, in the large-
Nc limit contains the pomeron → odderon vertex has the
structure shown in Fig. 2. The internal blob – with two
gluons entering from above and six gluons leaving below
– defines the pomeron → odderon (POO) vertex, and its
color structure is quite simple:

δb,b′da1a2a3da4a5a6W (1, 2, 3|4, 5, 6) , (3)

where the b, b′ are the color labels of the reggeized gluons
of the ladder above the POO vertex, ai the color indices of
the reggeized gluons below the vertex (counting from left
to right). The arguments of the function W refer to the
momenta of the gluons. Below the POO vertex, we have
the two non-interacting odderons: the pairwise interactions
inside (123) and (456) lead to the color singlet odderon
Green functions. We note that this simple form emerges
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Fig. 2. Illustration of the process γ∗ + p → ηc +X: the blob in
the center of the figure denotes the transition vertex pomeron
→ 2 odderons

only after taking the large-Nc limit. In the more general
case of finite Nc, the expression (3) has to be summed
over permutations of the indices (123456). Moreover, in
Fig. 2 below the POO vertex, we would have to include
all pairwise interactions between the reggeized gluons. It
is only in the large-Nc limit that any rung which connects
the two color singlet (123) and (456) costs a suppression
factor of the order 1/N2

c and, therefore, can be neglected.
The DR

6 term is nothing but a sum of BFKL ladders in
which, at the lower end, the reggeized gluons split into two
three or four elementary gluons. Inserting this sum into the
blob in Fig. 1b and taking the large-Nc limit, we arrive at
structures illustrated in Fig. 3: the BFKL ladder couples to
odderon states consisting of three non-interacting gluons.
Below we will discuss this in further detail: starting from the
color structure ofDR

6 , given in [8], (6.2), it canbe shown that
all these contributions are subleading in 1/Nc; in our further
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Fig. 3. The second contribution to the same process as Fig. 1:
the pomeron couples to the two odderons which consist of three
non-interacting gluons

discussion we will keep one of them which is suppressed by
a factor 1/Nc (all others are further suppressed).

All this discussion refers to Fig. 1b which illustrates
the integrated inclusive cross section. In order to derive
the pQCD formula for the differential cross section, an
alternative separation of D6 is more suitable. For the case
of D4 which leads to the triple pomeron vertex, such a
separation has been discussed in [9,10]: as a result, a slightly
different expression for the triple pomeron emerges. This
question will be discussed in a forthcoming paper.

3 Contribution of the reggeizing piece DR
6

Let us now analyze the two contribution to our inclusive
cross section in some detail. We start with the ideologically
(but not calculationally!) simpler part of the transition rate
corresponding to the reggeizing piece,DR

6 , of [8] (Fig. 3). In
the following, we will denote this piece by the superscript
P . The corresponding inclusive cross section is given by
the expression

dσ(P )

dt
= ξ

∑
i=1,2

∫
dω
2πi

eY ω

∫
dµ1dµ2∏6

i=1 k
2
i

× Φi(1, 2, 3)[Φi(4, 5, 6)]∗DR
6 (1, 2, 3, 4, 5, 6;ω) . (4)

The function DR
6 depending on all gluonic momenta is the

reggeizing piece of the six-gluon amplitude found in [8]. It is
given by the sum of BFKL pomerons depending on various
partial sums of the momenta of the six gluons 1, . . . , 6, mul-
tiplied by certain color factors.All color factors are obtained
by permutations of inital (123) or final (456) gluons from

da1a2a3a4a5a6 = tr(ta1ta2ta3ta4ta5ta6)

+ tr(ta6ta5ta4ta3ta2ta1) , (5)

where ta is the quark colormatrix.This evidently gives eight
different color factors, so thatDR contains eight terms with
different color structure. Coupling DR to the two impact
factors in (1) one has to contract its color indices with
a product da1a2a3da4a5a6 corresponding to the C = −1
exchange of three gluons. Then one finds that all color
factors inDR are transformed into the same common color
factor F (R)

c

da1a2a3a4a5a6da1a2a3da4a5a6 =
(N2

c − 1)2(N2
c − 4)2

8N3
c

≡ N5
c F

(P )
c . (6)

At largeNc it is∼ N5
c /8, in correspondencewith the general

rules of the 1/Nc expansion. Note however that at Nc = 3
its value 200/27 ∼ 7.4 is nearly 4 times smaller than given
by theNc → ∞ limit 243/8 ∼ 30. Finally the overall factor
ξ is equal to

ξ =
1
2

π
16π3

(
1

4 · 4(2π)6(3!)

)2

. (7)

The first factor 1/2 corresponds to the averaging over the
two photon polarizations (we just consider transverse pho-
ton). Then one has the standard 1/(16π3) phase space vol-
ume for the diffractive process times a π factor due to angu-
lar averaging. In the squared term there is the contribution
of (2π)−4 absent in each dµ and an extra (2π)−2 which
we associate to the impact factor [2] in our normalization.
Moreover one has the symmetry factor 1/3! for each of the
gluon triplets, 1/4 from the color factor which is in fact
(1/4)dabc and 1/4 from the integrations over si, instead of
over ki− in the definition of the impact factor.

Separating the common factor g4
sN

5
c F

(P )
c , where gs is

the strong coupling constant, we shall reproduce the rest of
the amplitude DR from [8] in a simplified manner, taking
into account that, first, in the pomeron of Fig. 3 the total
momentum of the two gluons is zero and, second, in the
high-energy limit the amplitude for the leading contribution
is symmetric in the two gluons. Thus this ampitude P (k)
(amputated, that is, without external gluon propagators)
depends only on one of the gluon momenta. In terms ofP (k)
the reggeizing piece is then given by a sum of 31 terms:

DR
6 =

6∑
i=1

P (i) −
3∑

i �=k=1

P (ik) −
6∑

i �=k=4

P (ik)

−
3∑

i=1

6∑
k=4

P (ik) +
3∑

i �=k=1

6∑
l=4

P (ikl) + P (q) . (8)

Here thenotations il and ilmdenote sumsof gluonmomenta
ki + kl and ki + kl + km respectively. Expression (8) can
further be simplified if we take into account that in (4)
the integration over all momenta is done for a function
which is totally symmetric in the gluons (123) and (456).
Moreover, it is symmetric under the interchange (123) ↔
(456). Therefore, on the RHS of (8) the terms inside each
sum are identical, and we get

DR
6 = 6P (1) − 6P (12) − 9P (14) + 9P (124) + P (q). (9)
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The γ∗ → ηc impact factor is given by [2]

Φi(1, 2, 3) = bεij
qj
q2
φ(1, 2, 3), i, j = 1, 2. (10)

Here

φ(1, 2, 3) =
3∑

i=1

q(q − 2ki)
M2 + (q − 2ki)2

− q2

M2 + q2
(11)

andM2 = Q2+4m2
c , whereQ2 is the photon virtuality and

mc the charmed quark mass. The coefficient b is given by

b =
16
π
ecg

3
s
1
2
mηcb0 , (12)

where ec = (2/3)e is the electric charge of the charmed
quark mηc is the ηc meson mass and b0 can be determined
from the known radiative width Γ (ηc → γγ)= 7 keV:

b0 =
16π3

3e2c

√
πΓ
mηc

. (13)

The impact factor (10) is symmetric in the three gluon
momenta, and it vanishes if any of the momenta goes to
zero. Taking in (4) the product of the two impact factors
and summing over polarizations we obtain

Fγ∗→ηcφ(1, 2, 3)φ(4, 5, 6) , (14)

where

Fγ∗→ηc =
b2

q2
. (15)

The pomeron P (k) can be presented as a convolution of
the BFKL Green function with the color distribution ρ(r)
in the hadronic target:

P (k) = −g2
s

∫
d2r′G(Y, k, r′)ρ(r′). (16)

Note the minus sign. After transforming the initial momen-
tum space expression for the impact factor into the coordi-
nate space, the impact factor is proportional to 1−exp(ikr).
When multiplying with the pomeron Green function and
doing the k-integral, there is no contribution from the “1”
(since, in coordinate space, the pomeron Green function
vanishes when both arguments coincide), and the non-zero
contribution comes from the second term, − exp(ikr). The
Green function has to be taken in a mixed representation,
momentum k at the odderon side, coordinate r′ at the pro-
ton side. Also, one side of the Green function is amputated,
the other not. We have

G(Y, k, r′) = − 1
8π2 qr

′
∫

dν
ν2 + 1/4

eY ω(ν,0)
(
qr′

2

)2iν

(17)
with

ω(ν, n) = 2ᾱs

(
ψ(1) − Reψ

(
1 + |n|

2
+ iν

))
,

ᾱs =
αsNc

π
. (18)

At large rapidities small ν’s dominate. Due to the finite
dimension of the target, in (17) the values of r′ are limited
by the radiusR. So we can neglect factor the (r′)2iν , and the
integration over r′ will be replacedby the average transverse
dimension of the target R. So at high Y the Green function
gives a factor

− 1
2π2 kR

√
π
aY

e∆Y exp
(

− ln2 kR

4aY

)
. (19)

Here∆ = ω(0, 0) = ᾱs 4 ln 2 is theBFKL interceptwitha =
7ᾱsζ(3). The second exponential factor cuts the integration
over k to values ln2 k < aY . However, since the integration
in (4) is in fact convergent, we may drop this factor at high
enough Y . Putting (19) into (8) we get for the cross section

dσ(P )

dt
= ξg6

s
b2

2π2q2M3N
5
c F

(P )
c Re∆Y

√
π
aY

I
( q

M

)
, (20)

where the dimensionless function I(q/M) is given by the in-
tegral

I
( q

M

)
= M3

∫
dµ1dµ2∏6

i=1 k
2
i

× φ(1, 2, 3)φ(4, 5, 6) (6|k1| − 6|q − k1| − 9|k1 − k4|
+9|q − k1 − k4| + q) . (21)

The cross section (20) is of the order αs(αsNc)5. The 8-
dimensional integral (21) is non-factorizable and can be
done only numerically.

As an alternative way of evaluating this contribution
to the cross section, one might try to factorize the integra-
tion over gluonic momenta and to transform the pomeron
amplitude to the coordinate space using

k1+2iν = −(1 + 4ν2)
∫

d2r

2πr3

(
2
r

)2iν

eikr . (22)

Taking the limit ν → 0 and introducing the function of r

h(r) =
∫

dµ1φ(1, 2, 3)
k2
1k

2
2k

2
3

eik1r , (23)

we find the integral I as

I
( q

M

)
= −M3

∫
d2r

2πr3{(
6h(r)h(0) − 6eiqrh(−r)h(0) − 9h(r)h(−r)

+ 9eiqrh2(−r) + eiqrh2(0)
)

−
(
r = 0

)}
. (24)

In obtaining this expressionweused the fact that the change
q → −q is equivalent to changing r → −r in h(r). Also,
we have taken into account that P (k = 0) = 0, in order
to subtract the value of the brackets at r = 0 and thus to
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improve the convergence of the integral at r = 0. Passing
to the function

h1(r) = h(r) − eiqrh(−r), h1(0) = 0, (25)

we can rewrite (23) in a simpler form, which also shows
that the right-hand side is real:

I
( q

M

)
= −M3

∫
d2r

2πr3
(26)

(
6h(0)Reh1(r) − 9

2
|h1(r)|2 − (1 − cos(qr))h2(0)

)
.

Now we have only six integrations to be done numerically.
However the presence of the oscillating factor makes such
calculations very difficult. We therefore use (21) and per-
formed the integrations by Monte Carlo methods. The re-
sults will be presented in Sect. 6, together with the contri-
bution from the POO vertex.

4 The POO vertex in leading order in Nc

Next let us consider the irreducible partDI of the amplitude
for six reggeized gluons. Its contribution to the cross section
will be denoted by the superscript POO. Starting from [8]
(see (6.3)), we note that the RHS satisfies a BFKL-like
equation which we write in the symbolic form

(H6 − E)DI = D
(0)
I . (27)

Here H6 is the total Hamiltonian for six reggeized gluons,
which is a sum of pairwise interactions and of gluon trajec-
tories and describes their evolution, without changing the
number of gluons. The energy E = 1 − j = −ω is just one
minus the intercept. The driving term of the equation is a
sum of terms which describe transitions with a change of
the number of gluons, from “irreducible” configurations of
two, four, or five gluons to six gluons. At this moment it
is important to invoke the approximation of large number
of colors Nc → ∞. In this approximation, any interaction
inside the outgoing six-gluon state which connects colorless
groups of gluons is damped by 1/N2

c and can be neglected.
This means, in particular, that once a pair of states with
color color structure of two odderons is formed in the driv-
ing term,H6 in (27) contains no further interaction between
these two-odderon states. All what H6 does is to build up
the bound states of the gluons (123) and (456). So in order
to find the terms relevant for the POO transitions we only
have to see whether the final two-odderon states couples to
the driving term. One immediately sees that, at large Nc,
the irreducible configurations of four and five gluons, DI

4
and DI

5, reduce to the splitting of the initial pomeron into
two pomerons and thus cannot couple to the two-odderon
final state. Therefore, the transitions of interest can only
occur in terms which describe transitions of two gluons to
six gluons. In [8] four such terms of different color structure
were found.

The first group is given by a sum

da1a2a3da4a5a6W (1, 2, 3|4, 5, 6)

+ da1a2a4da3a5a6W (1, 2, 4|3, 5, 6) + . . . , (28)

where the sum extends over all (ten) partitions of the six
gluons into two groups containing three gluons each. Pro-
jecting onto the two-odderon color state we find the color
factor for the first term in (28)

da1a2a3da4a5a6da1a2a3da4a5a6 =
(N2

c − 1)2(N2
c − 4)2

N2
c

≡ N6
c F

(POO)
c ∼ N6

c , (29)

whereas for all the rest terms we have

da1a2a4da3a5a6da1a2a3da4a5a6 =
(N2

c − 1)(N2
c − 4)2

N2
c

∼ N4
c . (30)

So at large Nc we will retain only the first term in the
sum, (28).

Apart from theW terms, the remaining driving terms in
(6.3) of (27) with transitions from two to six gluons contain
three more groups of terms of different color structure.
Terms denoted by L in [8] are given by a sum

fa1a2a3fa4a5a6L(1, 2, 3|4, 5, 6)

+ fa1a2a4fa3a5a6L(1, 2, 4|3, 5, 6) + . . . , (31)

with the sum, again, extending over all (ten) partitions
of the six gluons into two groups containing three gluons
each, and the function being described in [8]. Obviously
these terms give zero when projected onto the color state
of two odderons.

Finally, the terms denoted by I and J are given by sums:

da1a2a3a4δa5a6I(1, 2, 3, 4|5, 6)

+ da1a2a3a5δa4a6I(1, 2, 3, 5|4, 6) + . . . (32)

and

da2a1a3a4δa5a6I(1, 2, 3, 4|5, 6)

+ da2a1a3a5δa4a6I(1, 2, 3, 5|4, 6) + . . . , (33)

with the sum extending over all partitions of six gluons
into two groups with four and two gluons, known function
I and J and

da1a2a3a4 = tr(ta1ta2ta3ta4) + tr(ta4ta3ta2ta1). (34)

Projecting onto the color state of two odderons we find
non-zero color factors of the type
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da1a2a4a5δa3a6da1a2a3da4a5a6 =
(N2

c − 1)(N2
c − 4)2

4N2
c

∼ N4
c . (35)

So although these terms seem to involve POO transitions,
they are down by a factor N2

c as compared to (29).
So in the end we find that, in the large Nc limit,

the transitions POO are fully described by the function
W (1, 2, 3|4, 5, 6) which represents a convolution of the
pomeron with a POO vertex. The functional form of W
in [8] is rather complicated, however closer inspection shows
a surprisingly simple structure [3]. Let us briefly recapit-
ulate this structure. It is convenient to introduce two op-
erators which transform a function of the momenta of two
gluons into a new function which depends upon the mo-
menta of three gluons. Namely, define Ŝ to be an operator
acting on two-gluon states and with values on the three-
gluon states, which performs an antisymmetrization in the
two incoming gluons, splits the first of them in two and
sums over the cyclic permutations of the outgoing gluons:

Ŝ(1, 2, 3|1′, 2′)φ(1′, 2′) =
1
2

∑
(123)

[φ(12, 3)−φ(23, 1)] . (36)

Next define another operator P̂ which performs an anti-
symmetrization in the two incoming gluons and splits the
first of them in three outgoing gluons:

P̂ (1, 2, 3|1′, 2′))φ(1′, 2′) =
1
2
[φ(123, 0)) − φ(0, 123)] . (37)

Apart from these operators we introduce a function
f(1, 2|3, 4), antisymmetric in the first and second pairs of
gluons and symmetric under the interchange (12) ↔ (34),
as a sum of the functions G(1, 2, 3), which were introduced
in [9, 10] in the context of the three-pomeron vertex:

f(1, 2|3, 4) = G(1, 23, 4) −G(2, 13, 4)

− G(1, 24, 3) +G(2, 14, 3) . (38)

The explicit form of the general function G(1, 2, 3) is not
important for our purposes (it can be found e.g. in [9,10]).
We only have to know that

G(1, 2, 3) = G(3, 2, 1), G(0, 2, 3) = G(1, 2, 0) = 0 , (39)

and that, up to a coefficient,G(1, 0, 3) is given by the BFKL
Hamiltonian H2 applied to the pomeron:

G(1, 0, 3) = − 1
Nc

(
H2P

)
(1, 3) . (40)

In terms of Ŝ, P̂ and f we find

W (1, 2, 3|4, 5, 6) = −1
8
g4
s (Ŝ1 − P̂1)f12(Ŝ

†
2 − P̂ †

2 ) , (41)

where the indices 1 and 2 refer to the triplets of gluons
(123) and (456), respectively.

5 Part of the cross section
with a POO transition

To find the cross section corresponding to the ηc production
via the POO transition (Fig. 1) we have to couple the POO
vertex with the two odderons attached to the initial and
final γ∗ → ηc impact factors. To write it in a compact form
we introduce the Green functions G(1)

3 and G
(2)
3 for the

initial and final odderons composed of gluons 123 and 456,
respectively. They evolve the odderon state in the rapidity
interval with length y < Y . Then using (41) we can write
the cross section as

dσ(POO)

dt
= −1

8
g4
sN

6
c F

(POO)
c ξ

∑
i=1,2

∫
dy

× 〈Φi
1|G(1)

3 (Ŝ1 − P̂1)f12(Ŝ
†
2 − P̂ †

2 )G(2)
3 |Φi

2〉 , (42)

where it is assumedthat theaveraging isdone independently
over the gluons 123 (index 1) and 456 (index 2), the function
f depending on both groups of variables.

At this point we recall that the full set of odderon states
and consequently the full Green function G3 are unknown.
Wearegoing touseapart of it corresponding to the solutions
found in [3], which have the maximal intercept of all known
states and besides this have a non-zero coupling to the
perturbative γ∗ → ηc impact factor. These odderon states
are expressed via the known antisymmetric pomeron states
E(ν,n) with odd values of n:

Ψ (ν,n)(1, 2, 3) (43)

= c(ν, n)
1

k2
1k

2
2k

2
3
Ŝ(1, 2, 3|1′, 2′)k′

1
2
k′
2
2
E(ν,n)(1′, 2′) ,

where

c(ν, n) =

√
g2
sNc

−3(2π)3ω(ν, n)
(44)

and ω(ν, n) is given by (18). The part of the Green function
G3 corresponding to these states then aquires a form similar
to the pomeron Green function [5]

G3(y1|1, 2, 3|1′, 2′, 3′) =
∑

odd n

∫
dν (45)

× ey1 ω(ν,n)β(ν, n)Ψ (ν,n)(1, 2, 3)Ψ (ν,n)∗
(1′, 2′, 3′) ,

with

β(ν, n) =
(2π)2(ν2 + n2/4)

[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]
(46)

and Ψ (ν,n) given by (43).
Now we use the fact that we only study our cross section

in the region where both the rapidity of the pomeron y and
that of the odderon y1 = Y − y are large. This allows one
to retain in (45) only the branch |n| = 1 with a maximal
intercept and also restrict the integration over ν to small
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values. In the limit ν → 0 the coupling of the odderon to
the γ∗ → ηc impact factor was calculated in [5] to be

〈Φi
γ→ηc

|Ψ (ν,n)〉 = − i
π
bεij

qj
q

1
c(ν, n)

q2iν
1

q2 +M2 . (47)

After summation over the photon polarizations the two
matrix elements (47) provide a factor

1
π2

b2

c(ν1, n1)c(ν2, n2)
1

(q2 +M2)2
q2i(ν1−ν2) , (48)

where (ν1, n1) and (ν2, n2) refer to the summation and
integration variables inG(1)

3 andG(2)
3 respectively. At finite

values of q one can neglect the last factor in (48).
We are left with the matrix element

T ≡ 〈Ψ (ν1n1)
1 |(Ŝ1 − P̂1)f12(Ŝ

†
2 − P̂ †

2 )|Φ(ν2,n2)
2 〉 . (49)

Its calculation is greatly simplified by the property of the
odderon state (43) found in [3]. For any function φ(1, 2) of
two gluon momenta and odderon state (43) one has

〈Ψ (ν,n)|(Ŝ − P̂ )|φ〉 =
1

c(ν, n)
〈E(ν,n)|φ〉 . (50)

Note that the matrix element on the left-hand side is taken
in the space of three gluons, whereas that on the right-
hand side is taken in the space of only two gluon momenta.
This property greatly simplifies the matrix element (49).
Using (50) we get for it

T =
1

c(ν1, n1)c(ν2, n2)
〈E(ν1,n1)

1 |f12|E(ν2,n2)
2 〉 . (51)

Now we again use the fact that y1 is large and so only
values |n| = 1 and |ν| << 1 contribute. At |n| = 1 and
small ν the pomeron wave funtions entering (51) reduce to
δ functions of gluon momenta [5]

E(ν,±1)(1, 2)ν→0 =
i

2πq

(
δ2(k1) − δ2(k2)

)
,

E(ν,±1)(4, 3)ν→0 =
i

2πq

(
δ2(k4) − δ2(k3)

)
. (52)

Note that the second wave function has to be taken in
conjugate form. Putting this into (51) and recalling (38)
and the properties of the function G (39) and (40) we get

T = − 1
c(ν1, n1)c(ν2, n2)

4
(2π)2q2

G(q, 0,−q)

=
1

c(ν1, n1)c(ν2, n2)
1

π2q2
1
Nc

(H2P )(q) . (53)

The last factor is just the BFKL Hamiltonian applied to
the pomeron state.

As in Sect. 2, to find the pomeron P (q) attached to the
hadronic target we present it as the BFKL Green function
applied to the color distribution in the hadron, (16). Again

we need a mixed amputated–non-amputated Green func-
tion in the momentum space in its amputated part, (17).
Applying the BFKL Hamiltonian we get

H2G(y, q, r) =
1

8π2 qr

∫
dνω(ν, 0)eyω(ν,0) 2−2iν(qr)2iν

ν2 + 1/4
.

(54)
At large y with finite q and r we neglect all dependence on
ν except in the exponential to obtain similarly to (19)

HG(y, q, r) =
1

2π2 qr∆ey∆

√
π
ay

. (55)

Integration of r with the target color density converts it
into the average target transverse radius R with a minus
sign; see (16).

So we find for the matrix element T

T = − 1
2π4q2

1
c(ν1, n1)c(ν2, n2)

g2
s

Nc
qR∆ey∆

√
π
ay

. (56)

We have finally to do the integrations over ν1 and ν2 and
summations over n1 and n2, which in the limit of high y1
only take values ±1. These latter summations are trivial
and give a factor 4. At |n| = 1 and small ν we have

ω(ν,±1) = −2ᾱsζ(3)ν2 . (57)

One of the denominators in (46) reduces to ν2 and is singular
at ν → 0.However this singularity is cancelled by the square
of the 1/c2(ν,±1) coming from (48) and (56). Therefore we
find at small ν

β(ν,±1)
c2(ν,±1)

= 12π3ζ(3) . (58)

Neglecting all the rest ν-dependence except in the expo-
nential in (45), integrations over ν1 and ν2 provide a factor

π
2ᾱsζ(3)y1

. (59)

Combining all the factors we finally get for the cross
section a simple expression:

dσ(POO)

dt
= 18πξN6

c F
(POO)
c (60)

×
∫

dy g6
s
∆

Nc

b2Rζ(3)
q(q2 +M2)2

e∆y 1
ᾱsy1

√
π
ay

.

It steadily grows as q2 diminishes and behaves as 1/q at
small q. Integrating over all q we find the cross section

σ(POO) (61)

= 9π3ξN6
c F

(POO)
c

∫
dy g6

s
∆

Nc

b2Rζ(3)
M3 e∆y 1

ᾱsy1

√
π
ay

.

It falls with Q2 and the meson mass as 1/(Q2 +mPS)3/2.
The cross section has an orderαs(αsNc)6, an order higher in
αsNc than the leading contribution given by the reggeizing
part (Fig. 2). This implies that the vertex POO has the
same order αsNc as the triple pomeron vertex.
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6 Numerical results

Both the cross section with a pure pomeron exchange and
the one with aPOO vertex have a simple dependence on the
energies, which separates into a factor with the expected
behavior at large rapidities. Separating also all the rest of
the non-trivial factors we find the pure pomeron exchange
contribution as follows:

dσ(P )

dt
= c(P )αemαs(ᾱs)5b20

m2
ηc
R

q2M3 I
( q

M

)
f (P )(Y ) , (62)

where

f (P )(Y ) = e∆Y

√
π
aY

(63)

and

c(P ) =
F

(P )
c

5184 π6 . (64)

The part originating from the POO vertex is

dσ(POO)

dt
(65)

= c(POO)αemαs

∫
dy (ᾱs)6b20

m2
ηc
R

q(q2 +M2)2
f (POO)(Y, y) ,

where now

f (POO)(Y, y) =
1

ᾱs(Y − y)
e∆y

√
π
ay

(66)

and

c(POO) =
F

(POO)
c ζ(3) ln 2

36π4 . (67)

The cross section with the POO vertex integrated over all
transferred momenta is

σ(POO) =

1
2

πc(POO)αemαs

∫
dy (ᾱs)6b20

m2
ηc
R

M3 f (POO)(Y, y) . (68)

With Nc = 3 the color factors become

F (P )
c = 200 · 3−8, F (POO)

c = 1600 · 3−8 . (69)

Regarding the region of integration in rapidity y, as ex-
plained in the introduction, we consider the interval δY <
y < Y − δY to warrant the use of the asymptotic forms for
both the pomeron and the odderons. We choose δY = 3.

One should also be cautious with the coupling constants
in the expressions for the cross sections. In fact they refer to
different scales relevant to the studied processes. Obviously
one of the coupling constants refers to the coupling to the
proton at a small and so non-perturbative scale. For the
process mediated by the pure pomeron all other coupling
constants are to be taken at the scale of the γ∗ → ηc

transition, that is the maximal of q and M . The cross
section falls quite rapidly as q becomes larger than M , so
that we can safely take M as the relevant scale. For the

process with the POO transition however only three of the
remaining six α refer to this scale. The other three are to be
taken at an intermediate scale, characteristic for the POO
transition at rapidity y. For high rapidities Y and y one can
use the fact that the characteristic momenta k in the BFKL
pomeron at rapidity Y have the order ln k ∼ √

Y . Then
one obtains a crude estimate for the coupling constant at
the POO junction:

αPOO ∼
√
Y

y
αs(M) . (70)

We have taken Y = ln(1/x) with x defined as

x =
m2

ηc
+Q2

s+Q2 . (71)

Passing to concrete values of the coupling constants we
take αs(M) as given by the leading order β function with
three or four flavorsNf and ΛQCD = 0.2 GeV/c. The value
of αs at the POO junction was taken according to (70).
As to the values of the pomeron intercept and its coupling
to the proton, we have borrowed them from [11], where
the proton structure function at small x was fitted by the
pomeron exchange. From this fit one extracts both ∆ and
the product αsR:

∆ = 0.377, αsR = 0.096 fm (Nf = 3),

αsR = 0.058 fm (Nf = 4) . (72)

At first sight one may expect a large difference in the results
for differentNf . However a smaller value of αsR forNf = 4
is compensated for by a larger value of the rest of the
coupling constants, so that the final results are practically
independent of the number of flavors taken into account
(see Fig. 7).

The calculation of the POO contribution (65) is
straightforward. To find the contribution from the pure
pomeron exchange (62) one has to calculate the inte-
gral (21). We did this using the standard Monte Carlo
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2000

2500

0.1 1 10

I(
q/

M
)

q/M

Fig. 4. The function I(q/M) from (21)
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Fig. 6. Differential cross sections dσ/dt from the reggeized
pomeron exchange (P ), POO transition (POO) and total at
Q2 = 25 (GeV/c)2

program VEGAS. The results for I(q/M) are presented in
Fig. 4.

Our final results for the differential cross sections (62)
and (65) and their sum (forNf = 3) are presented in Figs. 5
and 6 for

√
s = 300 GeV and Q2 = 0 and 25 (GeV/c)2, re-

spectively.
As we see, the contribution from the POO transition

turns out to be of the same order as the one coming from the
direct coupling of the pomeron to non-interacting gluons
(P contribution).

However, the two contributions seem to behave differ-
ently at small transferred momenta. From (65) we see that
at q → 0 the POO contribution rises as 1/q. On the other
hand, the P contribution does not show such a behavior
and seems to tend to a constant or zero at small q. This may
help to see the POO contribution against the reggeizing
pomeron contribution at very low q.
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0 5 10 15 20 25

σ 
(p

b)

Q2 (GeV/c)2

s1/2=300 GeV

Nf=3

Nf=4

Fig. 7. Integrated cross sections σ for different number for
flavors as a function of Q2

Integrated over transferred momenta the total cross
sections are found at Q2 = 0 to be

σ(P ) = 34 pb, σ(POO) = 31 pb,

σ = σ(P ) + σ(POO) = 65 pb

and at Q2 = 25 (GeV/c)2

σ(P ) = 0.87 pb, σ(POO) = 0.67 pb,

σ = σ(P ) + σ(POO) = 1.54 pb .

The total integrated cross sections σ (sum of P and POO)
in the range of photon virtualities 0 < Q2 < 25 GeV−2 are
shown in Fig. 7. Here we present results for both Nf = 3
and 4. As one observes, the difference is quite insignificant.

With the growth of energy both contributions increase,
preserving their shape in q. The increase is much more
pronounced in the reggeizing pomeron contribution, since
in this case the pomeron occupies the whole rapidity range,
whereas for the POO transition this range is shorter.

7 Conclusions

We have calculated the cross section of inclusive diffractive
photo- and leptoproduction of ηc mesons, γ∗p → ηc +X.
We have considered the “triple Regge” contribution which
contains the couplingPOO of the pomeron to twoodderons.
The inclusion of a second contribution where the pomeron
directly couples to two three-gluon states results in a signif-
icant increase of the cross section which grows with energy.
However, in order to see the structure of the QCD odderon
state with C = −1 state one has to select diffractive events
with a large enough gap between the missing mass state
“X” and the ηc. The total production rate is found to be
of the order of 60 pb for photoproduction.

In our previous publication [5]we calculated the produc-
tion rate for the quasielastic reaction γ∗ +p → ηc +p due to
odderon exchange. The photoproduction cross section was
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reported to be 27 pb, which would be smaller by a factor of
2 compared to the present case. However, note that for the
quasielastic process considered in [5] one had to make the
assumption of the non-perturbative odderon–proton cou-
pling. In [5] we used the coupling proposed in [2], and we put
the effective coupling constant αs equal to unity. However,
in a recent analysis of the pp and pp̄ elastic scattering data
this coupling constant has been estimated to be 0.3 [12].
With this value of the effective coupling constant the cross
sections reported in [5] have to be reduced by a factor 30,
and, in fact, the cross section of the inclusive ηc is much
larger than the quasielastic one.

In the present calculation the very poorly known
odderon-proton coupling does not enter. Instead one has to
know also the non-perturbative pomeron–proton coupling,
transformed into the value of the product αsR where R
is the effective proton radius. This product can be found
with a much higher degree of reliability. In this study we
have used the fit to the experimental proton structure func-
tion in [11]. Note that it gives physically reasonable values
∆ = 0.377 and R = 0.59 fm (for Nf = 4), which more
or less agree with estimates made by different methods.
Correspondingly, we feel that the cross sections found in
this paper are much less affected by the uncertainty in the
non-perturbative coupling of the proton.
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